

Гібридний інвертор

SUN-3.6K-SG03LP1-EU

SUN-5K-SG03LP1-EU

SUN-6K-SG03LP1-EU

User Manual

Зміст

1. Вимоги щодо тех 2. Ввелення	ніки безпеки	1 1-4
2.1. Зовнішній вигляд ін	вертора	
2.2. Розміри інвертора		
2.3. Опис інвертора		
2.4. Базова схема фотоел	ектричної системи	
3. Встановлення		5-22
3.1. Комплектація прила	ду	
3.2. Інструкції з встанов	лення	
3.3. Підключення акумул	лятора	
3.3.1. Види функціональ	них портів	
3.5.2. Підключення дагч	ика температури для свинцево-кислотної оатареї	
3.5. Пілключення фотое	пектричних молупів	
3.5.1. Вибір ФЕ модуля		
3.6. Підключення котуш	ки трансформатора струму	
3.6.1. Підключення елек	гролічильника	
3.7. Підключення заземл	ення (обов'язково)	
3.8.WI-FI з'єднання		
3.9. Система електропро	водки інвертора	
3.10. Схема типового зас 3.11. Схема однофозиото	тосування генератора	
3.12 Схема однофазного	паралельного підключення (250 В)	
4 Vπηαβπίμμα	паралельного підклютення 250/400В	22
4.1 Vnis geworning/new gewor		22
4.1 УВІМКНЕННЯ/ВИМКНЕН	андикації	
5 Т		22.20
э. індикація жк-ди	сплея	23-36
5.1. Основний екран		
5.1.1. Структура меню п	рограми	
5.2. Вкладки сонячніпан	елі, інвертор, навантаження, мережатаакумуляторні оатареі	
5.5. Сторінки графіків ви внутрішньою мережею	проолення сонячноте нергп, споживанние нергпнавантаженням та	
5.4. Меню налаштування	системи	
5.5.Меню основних нала	штувань	
5.6.Меню налаштування	батареї	
5.7.Меню налаштування	режиму роботи системи	
5.8. Меню налаштуання	мережі Isal Salf Charle	
5.9. Metrod CEI-021 Stand		
5.11 Меню полаткових (и використання порту тенератора	
5.12. Меню інформації п	лип пристрій	
6. Режими роботи с	онячної електростанції	37-38
7 Інформація про н	есправності	39-41
8 Межі вілповілал		42
0 Техніцині опис	5110411	12_11
		43-44
		43-4/
н. додатоки		48

Про цей посібник

Посібник головним чином описує інформацію про продукт, вказівки щодо встановлення, експлуатації та обслуговування. Посібник не містить повну інформацію про фотоелектричну (PV) систему.

Як користуватися цим посібником

Перед виконанням будь-яких операцій з інвертором прочитайте посібник та інші пов'язані документи. Документи необхідно ретельно зберігати .

Вміст може періодично оновлюватися або переглядатися у зв'язку з розвитком продукту. Інформація в цьому посібнику може бути змінена без попередження. Останню версію посібника можна отримати за адресою **service@deye.com.cn**

1.Вимоги щодо техніки безпеки.

· Цей розділ містить важливі вказівки з техніки безпеки та експлуатації. Прочитайте та збережіть цей посібник для подальшого використання.

• Перед використанням інвертора, будь ласка, ознайомтеся з інструкціями та попереджувальними знаками на акумуляторі та відповідними розділами в інструкції з експлуатації.

· Не розбирайте інвертор. Якщо вам потрібне обслуговування або ремонт, віднесіть його до професійного сервісного центру.

· Неправильна повторна збірка може призвести до ураження електричним струмом або пожежі.

• Щоб зменшити ризик ураження електричним струмом, від'єднайте всі дроти перед виконанням будь-якого технічного обслуговування чи чищення. Вимкнення пристрою не зменшить цей ризик.

· Застереження: лише кваліфікований персонал може встановлювати цей пристрій з акумулятором.

· Ніколи не заряджайте акумулятори при температурі нижче нуля..

· Для оптимальної роботи цього інвертора дотримуйтеся необхідних специфікацій, щоб вибрати відповідний розмір кабелю. Дуже важливо правильно експлуатувати цей інвертор.

 Будьте обережніпід час роботи з металевими інструментами на акумуляторних батареях або поручіз ними. Падіння (дотик) металевого інструменту може викликатиіскру або коротке замикання в акумуляторних батареяхінавіть призвести до вибуху.

 Будь ласка, дотримуйтесь правил монтажу при відключенні або підключенні клем змінного або постійного струму. Для отримання більш детальної інформації зверніться до розділу «Установка» цього Посібника.

• Інструкції щодо заземлення - цей інвертор слід підключити до постійно заземленої системи електропроводки. Обов'язково дотримуйтеся місцевих вимог і правил встановлення цього інвертора.

 Ніколи не приводьте до короткого замикання виходу змінного струму і входу постійного струму. Не підключайтеся до мережіпри короткому замиканніна вході постійного струму.

2. Введення

В інструкції представлений багатофункціональний інвертор,що поєднує в собі функціїі нвертора, сонячного зарядного пристрою та акумуляторного зарядного пристрою для забезпечення безперебійного живлення. Його багатофункціональний ЖК-дисплей дозволяє налаштовувати і відображати різні робочі операції, такі як зарядка акумулятора, зарядка від мережі змінного струму/сонячних батарей, а також прийнятна вхідна напруга для навантажень.

2.1 Зовнішній вид інвертора.

19: Wi-Fiмодуль.

20: вентилятор (*Примітка: для деяких версій обладнання він відсутній

з'єднання змережею АС

2.2 Розміри інвертора.

2.3 Опис інвертора

- Власне споживання та подача в мережу.
- Автономний режим роботи та віддача в мережу.
- Автоматичний перезапуск при відновленні змінного струму зовнішньої мережі.
- Програмовані режими роботи: від мережі, автономний і в якості ДБЖ.

-Зарядний струм / напруга, що налаштовується залежно від типу акумуляторної батареї.

 Конфігурація зарядного струму/напруги батареї на основі додатків та за допомогою налаштувань ЖК-дисплея.

- Пріоритет для заряду акумуляторної батареї від змінного струму / сонячноїенергії / генератора.

- Сумісність із мережевою напругою або потужністю генератора.
- Захист від перевантаження/перегріву/короткого замикання.
- Розумна конструкція зарядного пристрою для оптимальної продуктивності акумулятора.
- Функція обмеження для запобігання віддачі надлишкової потужності в мережу.
- Підтримка Wi-Fi моніторингу, вбудовані 2МРР-трекера.
- Інтелектуальна триступінчаста зарядка (МРРТ) акумуляторних батарей.
- Налаштування режиму роботи за часом доби.
- Функція розумного навантаження (SmartLoad).

2.4 Базова схема фотоелектричної системи

На малюнку нижче показано базову схему застосування цього інвертора. Система включає такі пристрої, що забезпечують повноту роботи системи: -Генератор, розумне навантаження або мережевий інвертор;

-ФЕ (PV)модулі.

Проконсультуйтеся зі своїм системним інтегратором щодо інших систем, залежно від ваших вимог. Цей інвертор може живити всі види побутової техніки вдома чи в офісі, включно з електроприладами, такими як холодильник і кондиціонер.

3. Встановлення

3.1 Комплектація приладу

Перевірте обладнання перед встановленням. Переконайтеся, що упаковка не пошкоджена. Комплектація включає в себе:

3.2 Інструкції з встановлення

Запобіжні заходи при монтажі

Цей гібриднийінвертор може використовуватися поза приміщеннями (IP65). Переконайтеся, що місце встановлення відповідаєнаступним вимогам:

• Не встановлювати під прямим сонячним промінням

- Не використовувати в місцях, де зберігаються легкозаймисті матеріали.
- · Не використовувати у вибухонебезпечних зонах.
- Не встановлювати на прохолодному повітрі.
- Не встановлювати поблизу телевізійної антени або антенного кабелю.
- · Не встановлювати вище 2000 метрів над рівнем моря.

• Не встановлювати в умовах прямого потрапляння атмосферних опадів або вологості > 95%.

Будь ласка, УНИКАЙТЕ прямого сонячного світла, впливу дощу, снігу під час встановлення та експлуатації. Перш ніж підключати всі дроти, будь ласка, зніміть металеву кришку, викрутивши гвинти, як показано нижче:

Перед вибором місця для встановлення візьміть до уваги наступні моменти:

 Будь ласка, виберіть вертикальну стіну з несучою здатністю, що підходить для встановлення (бетон або інші не горючі поверхні). Габаритні розміри інвертора для монтажу показані нижче.

• Встановіть інвертор на рівні очей для полегшення роботи з ЖК-дисплеєм.

· Температура навколишнього середовища повинна бути в межах від -25 до 60 °C для забезпечення оптимальної роботи.

• Слідкуйте за тим, щоб інші предмети знаходилися від інвертора на відстані не менше зазначеного на схемі, щоб гарантувати відвід тепла і мати достатньо місця для від'єднання проводів.

Для правильної циркуляції повітря та відведення тепла залиште зазор приблизно 50 см усторони, зверху та знизу блоку та 100 см перед ним.

Встановлення інвертора

Пам'ятайте, що цей інвертор важкий! Будьте обережні, виймаючи з упаковки. Виберіть рекомендовану свердлильну головку (як показано на малюнку нижче), щоб просвердлити 4 отвори на стіні глибиною 62-70 мм.

- 1. Використовуйтевідповіднийдрельдлясвердлінняотворів.
- 2. Перенесіть інверторі, утримуючи його, переконайтеся, що отвори підісок збігаються з отворами для розпірних болтів. Закріпіть інвертор на стіні.
- 3. Затягніть головки болтів.

Монтаж підвісної пластини інвертора

3.3 Підключення акумулятора

Для безпечної роботи між акумулятором та інвертором потрібен окремий запобіжник (автомат) постійного струму або пристрій вимкнення.

Модель	Маркування кабелю	Кабель (mm²)	Значення крутного моменту (тах)
3.6/5/6Kw	2AWG	35	5.2Nm

Таблица3-2.Розмір кабеля.

Всіроботи повинні виконуватися професійно.

Підключення батарей відповідним кабелем важливо для безпечної та ефективної роботи системи. Рекомендовані кабелі в таблиці 3-2.

Виконайте наступні кроки, щоб підключити акумуляторну батарею:

- Виберіть відповідний кабель для батареї з правильним роз'ємом, який повинен підходити під клемми батареї.
- За допомогою підходящої викрутки відкрутіть болти на інверторі і підключіть кабель необхідного січеня від акумуляторної батареї, потім затягніть болтви круткою, переконайтеся, що болти затягнутіз моментом 5,2 Н·м за годиниковою стрілкою.
- 3. Переконайтеся, що полярність батареї та інвертора співпадають.

Для моделі 3,6 кВт/5 кВт/6 кВт, розмір гвинта роз'єму акумулятора: М6

Вхід акумулятора постійного струму

 Для захисту деталей та запобіганю попадання комах в інвертор, переконайтеся, що роз'єми в інверторі надійно закриті водонепроникною кришкою.

Підключення слід виконувати обережно.

Перед остаточним підключенням постійного струму або замиканням вимикача/від'єднання постійного струму переконайтеся, що позитивний (+) має бути з'єднаний з позитивним (+), а негативний (-) має бути з'єднаний з негативним (-). Зворотне полярне підключення батареї призведе до пошкодження інвертора.

3.3.2 Види функціональих портів

3.3.3 Підключення датчика температури для свинцево-кислотної батареї.

3.4 Підключення до мережі та підключення резервного навантаження.

 Перед підключенням до мережі, будь ласка, встановіть окремий автоматичний вимикач змінного струму між інвертором і мережею. Також рекомендується встановити автоматичний вимикач змінного струму між резервним навантаженням і інвертором. Це забезпечить надійне відключення інвертора під час обслуговування і повний захист від перевантаження струмом. Для моделі 3,6/5/6 кВт рекомендований вимикач змінного струму для резервного навантаження та мережі становить 40 А.

· Існує три клемні колодки з маркуванням «Grid», «Load» і «GEN». Не переплутайте вхідні та вихідні роз'єми.

Всі електромонтажні роботи повинні виконуватися кваліфікованим персоналом. Для безпеки системи та ефективної роботи дуже важливо використовувати кабель відповідного перерізу для підключення входу змінного струму. Щоб знизити ризик травми, використовуйте рекомендований кабель, як показано нижче.

Модель	Маркування Кабеля	Кабель (mm²)	Значення крутного моменту(тах)
3.6Kw	12AWG	4	1.2Nm
5Kw	10AWG	6	1.2Nm
6Kw	8AWG	8	1.2Nm

Таблиця 3-3. Рекомендований розмір для кабеля змінного струму.

Будь ласка, дотримуйтесь рекомендованого порядку дій при здійсненні підключення входу/виходу змінного струму:

- 1. Перед підключенням мережі, навантаження, генератора відповідного портуобов'язково відключіть відповідний автоматичний вимикач змінного струму або роз'єднувач.
- 2. Зніміть ізоляцію дроту на відстані 10 мм, відкрутіть болти, вставте дроти відповідно до полярності, вказаної на клемній колодці, і затягніть гвинти клем. Переконайтеся, що підключення завершено.

Переконайтеся, що джерело змінного струму вимкнено, перш ніж підключати його до пристрою.

- Потім вставте вихідні кабеля змінного струму відповідно до полярності, зазначеної на клемній колодці, і затягніть клему. Не забудьте також підключити кабеля N і PE до відповідних клем.
- 4. Переконайтеся, що кабеля надійно закріплені.
- 5. Для перезапуску таких приладів, як кондиціонер, потрібно принаймні 2-3 хвилини, оскільки потрібно мати достатньо енергії, щоб збалансувати холодоагент усередині контуру. Якщо виникне нестача електроенергії та відновиться за короткий час, це призведе до пошкодження ваших підключених приладів. Щоб запобігти такому пошкодженню, перевірте виробника кондиціонера, чи він оснащений функцією затримки. В іншому випадку цей інвертор викличе помилку перевантаження та вимкне вихід, щоб захистити ваш прилад, але іноді він спричиняє внутрішнє пошкодження кондиціонера

3.5 Підключення фотоелектричних модулів

Перед підключенням до фотоелектричних модулів встановіть окремий автомат постійного струму між інвертором і фотоелектричними модулями. Для безпеки та ефективної роботи системи дуже важливо використовувати відповідний кабель для підключення фотоелектричного модуля. Щоб зменшити ризик отримання травми, використовуйте відповідний рекомендований розмір кабелю, наведений нижче.

Модель	Маркування Кабеля	Кабель (mm²)
3.6/5/6Kw	12AWG	4

Таблиця 3-4. Параметри кабелю.

Щоб уникнути несправностей, не підключайте фотоелектричні модулі з можливим витоком струму до інвертора. Наприклад, заземлені фотоелектричні модулі призведуть до витоку струму на інвертор. Під час використання фотоелектричних модулів переконайтеся, що PV+ і PV- сонячної панелі не під'єднані до шини заземлення системи.

Рекомендується використовувати фотоелектричну розподільну коробку із захистом від перенапруги. Інакше це призведе до пошкодження інвертора, коли блискавка влучає у фотоелектричні модулі.

3.5.1 Вибір модуля ФЕ:

При виборі відповідних фотоелектричних модулів обов'язково враховуйте такі параметри:

- Напруга холостого ходу (Voc) фотоелектричних модулів не повинна перевищувати максимальну напругу холостого ходу для інвертора.
- Напруга холостого ходу (Voc) фотоелектричних модулів повинна бути вище мін. (зазначеного у специфікації)
- Фотоелектричні модулі, які використовуються для підключення до цього інвертора, мають бути сертифіковані за класом А відповідно до IEC 61730.

Модель інвертора	3.6KW	5KW	6KW	
Вхідна напруга PV	370V (125V~500V)			
Діапазон напруги фотоелектрично матриці МРРТ	i 150V-425V			
Кількість трекерів МРР		2		
Кількість стрінгів на трекер МРР		1+1		

Таблиця 3-5

*Примітка: Якщо дані,що зчитуються СТ, не вірні, ви можете спробувати вказати напрямок СТ на мережу.

Примітка:

Під час остаточного встановлення вимикач, сертифікований згідно з IEC 60947-1 і IEC 60947-2, повинен бути встановлений разом з обладнанням.

3.7 Підключення заземлення (обов'язково)

Кабель заземлення повинен бути підключений до пластини заземлення з боку мережі, щоб запобігти ураженню електричним струмом у разі <u>вих</u>оду зладу запобіжника.

3.8 WI-FI з'єднання

Для налаштування модуля Wi-Fi, будь ласка, зверніться до інструкції з налаштування Wi-Fiмодуля.

3.9 Система електропроводки інвертора.

3.10 Типова схема застосування дизель-генератора

Резервне навантаження

3.11 Схема однофазного паралельного підключення (230 В)

4. Управління

4.1 Увімкнення/вимкнення живлення

Після встановлення інвертора та підключення акумуляторів натисніть кнопку УВІМК/ВИМК, розташовану на лівій стороні корпусу. Якщо система зібрана без

акумуляторної батареї, але під'єднана до фотоелектричної системи або до мережі, включіть інвертор кнопкою УВІМК/ВИМКН при вимкненому положенні рубильника, після чого в меню Battery Settings виберіть режим «Без батареї» (NOBatt).

4.2 Панель керування та індикації

Панель керування та індикації знаходиться на передній частині інвертора. Панель включає чотири індикатори (див. таблицю 4-1), чотири функціональні кнопки (див. таблицю 4-2) і ЖК-дисплей, що відображає робочий стан і інформацію про вхідну / вихідну потужності.

L	ED індикатор	Пояснення
DC	Горить Зелене світло	Нормальне ФЕ з'єднання
AC	Горить Зелене світло	Нормальне мережеве з'єднання
Normal	Горить Зелене світло	Інвертор працює нормально
Alarm	Горить Червоне світло	Несправність

Таблиця 4-1.LED індикатори.

Функціональна клавіша	Опис
Esc	Вихідіз режиму налаштування
Up	Перехід до попереднього вибору
Down	Перехід до наступного вибору
Enter	Підтвердження вибору

Таблиця 4-2. Функціональні кнопки.

5. Індикація ЖК-дисплея

5.1. Основний екран

Сенсорний ЖК-дисплей відображає загальну інформацію про роботу сонячної електростанції.

1. Значок ON в центрі головного екрану вказує на те, що система працює в звичайному режимі. Якщо він перетворюється на «comm./F01~F64», це означає, що у інвертора є помилки зв'язку або інші помилки. Повідомлення про помилку та час її виникнення наведено в розділі меню «Інформація про пристрій». Детальну інформацію про причини виникнення помилки та способи її усунення можна подивитися в п.7 Посібника.

2. В горі екрана відображається дата та час.

3. У правому верхньому куті розміщено піктограму «Налаштування системи». Натиснувши, ви зможете увійти в меню налаштування системи, якя включає в себе базові налаштування, налаштування батареї, налаштування мережі, вибір режиму роботи системи, налаштування підключення генератора, розширені налаштування та інформацію по літій-іонних батареях.

4. На головному екрані відображені сонячна батарея, мережа, навантаження та батарея. Також стрілками відображається напрямок потоку енергії. При наближенні потужності до граничного рівня колір її індикації зміниться із зеленого на червоний, це дозволяє чіткіше відображати стан системи.

Зазначимо наступне:

• Вироблена фотоелектрична потужність і споживана навантаженням потужність завжди залишаються позитивними.

· Негативна потужність мережі означає її віддачу в мережу, позитивна одержання мережі.

· Негативна потужність батареї означає її зарядку, позитивна-розряд.

5.1.1. Структура меню програми.

5.2 Вкладки сонячні панелі, інвертор, навантаження, мережа та акумуляторні батареї

Batt	
Stand-by	
SOC: 36%	
U:50.50V	
I:-58.02A	
Power: -2930W	
Temp:30.0C	Li-BMS

Це сторінка з детальною інформацією про батарею. На сторінці відображається інформація про стан акумуляторної батареї, ступеня заряду, напрузі, силі струму, потужності, температурі. Якщо ви використовуєте літієву батарею, ви можете перейти на сторінку параметрів BMS.

Charging Voltage :53.2V	\square
Discharging Voltage :47.0V	Sum
Charging current :50A	Data
Discharging current :25A	
	Detai Data
	Charging Voltage :53.2V Discharging Voltage :47.0V Charging current :50A Discharging current :25A

L	.i-BN	٨S							
	Volt	Curr	Temp	soc	Energy	Cha	irge	Fault	
						Volt	Curr		
	50.38V	19.70A	30.6C	52.0%	26.0Ah	0.0V	0.0A	0 0 0	
	50.33V	19.10A	31.0C	51.0%	25.5Ah	53.2V	25.0A	0000	C
	50.30V	16.90A	30.2C	12.0%	6.0Ah	53.2V	25.0A	ojojo	Sum
	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V	0.0A	ojojo	Data
	0.00V	0.00A	0.0C	0.0%	0.0Ah	0.0V			
		0.00A			0.0Ah				
									\equiv
									Details
									Data

5.3 Сторінки графіків вироблення сонячної енергії, споживання енергії навантаженням та внутрішньою мережею.

На ЖК дисплеї відображаються графіки вироблення сонячної енергії для різних періодів часу. За допомогою стрілок «BBEPX» та «Вниз» перемикайтеся між графіками. Для більшої точності контролю вироблення електроенергії, будь ласка, перевірте систему моніторингу.

5.4 Меню налаштування системи

System Se	tup	Пе сторінка налаштування системи
Battery	System Work Mode	
Setting	Grid Setting Gen Port Use	
Basic Setting	Advanced Function Device Info.	

5.5 Меню основних налаштувань

Factory reset: скидання всіх параметрів інвертора. Lock out all changes: Увімкніть це меню для налаштування параметрів, які потребують блокування та не можуть бути налаштовані. Перед виконанням успішного скидання до заводських налаштувань і блокування систем, щоб зберегти всі зміни, вам потрібно ввести пароль, щоб увімкнути налаштуванья. Пароль для заводських налаштувань— 9999, а для блокування— 7777.

Пароль для відновлення заводських налаштувань: 9999

Пароль для блокування всіх змін: 7777

Системна самоперевірка: після вибору цього пункту необхідно ввести пароль. Пароль за замовчуванням 1234.

5.6 Меню налаштування батареї

На цій сторінці повідомляється, що сонячні панелі та генератор живлять навантаження та батарею.

(1)(3)

Generator		Сторінка з інформацією про генератор.
Power: 1392W	Today=0.0 KWH Total =2.20 KWH	На цій сторінці вказано вихідну напругу генератора, частоту, потужність, а також кількість енергії, вироблену генератором.
L1: 228V		
Freq:50.0Hz		

Lithium Mode: Протокол BMS. Будь ласка, зверніться до інструкції батареї.

Shutdown 10%:Це означає, що інвертор вимкнеться, якщо SOC нижче цього значення.Low Batt 20%:Це означає, що інвертор подасть сигнал, якщо SOC нижче цього значення.

Restart 40%: Робота батареї відновиться, якщо батарея SOC буде вище цього значення.

Рекомендовані параметри акумулятора

Тип батареї	Absorption Stage (Стадія поглинання)	Float Stage (Плаваюча стадія)	Тогque value Стадія вирівнювання (кожні 3 години 30 днів)	
AGM (or PCC)	14.2v (57.6v)	13.4v (53.6v)	14.2v(57.6v)	
Gel	14.1v (56.4v)	13.5v (54.0v)		
Wet	14.7v (59.0v)	13.7v (55.0v)	14.7v(59.0v)	
Lithium	Слід	Слідуйте параметрам напруги BMS		

5.7 Меню налаштування режиму роботи системи.

Work ModeSelling First:Цей режим дозволяє гібридному інвертору продавати будь-яку надлишкову електроенергію, вироблену сонячними панелями сітка. Якщо режим використання активний, енергію батареї також можна продавати в мережу. Енергія PV використовуватиметься для живлення навантаження та заряджання батареї, а потім надлишок енергії буде надходити в мережу. Пріоритет джерела живлення для навантаження виглядає наступним чином:

1. Сонячні панелі.

2. Мережа.

3. Від акумуляторних батарей(до досягнення заданого SOC або напруги)..

Zero Export To Load: Гібридний інвертор буде забезпечувати живленням лише підключене резервне навантаження. Гібридний інвертор не буде ані забезпечувати електроенергією домашнє навантаження, ані продавати електроенергію в мережу. Вбудований СТ виявить потужність що повертається до мережі та зменшує потужність інвертора лише для забезпечення локального навантаження та зарядити батарею.

Zero Export To CT: Гібридний інвертор не лише забезпечуватиме живлення підключеного резервного навантаження, але й живитиме підключене домашнє навантаження. Якщо фотоелектричної енергії та потужності батареї недостатньо, для цього знадобиться енергія мережі як доповнення. Гібридний інвертор не продаватиме електроенергію в мережу. У цьому режимі необхідна СТ. Спосіб встановлення СТ див. у розділі 3.6 Підключення СТ. Зовнішній СТ виявить, що потужність повертається до мережі, і зменшить потужність інвертора лише для забезпечення локального навантаження, зарядки акумулятора та домашнього навантаження.

Solar Sell:коли цей елемент активний, надлишок енергії може бути подано назад у мережу. Пріоритет використання виробленої електроенергії наступний: навантаження, зарядка акумуляторів, віддача.

Max. sell power: Максимальне значення потужності, що віддається у мережу.

Zero-export Power: для режимів Zero Export означає потужність віддачі до мережі. Рекомендується

встановити його на рівні 20-100Вт, щоб гібридний інвертор не віддавав потужність у мережу.

Energy Pattern: PV пріоритет джерела живлення.

Batt First: Фотоелектрична енергія спочатку використовується для зарядки батареї, а потім–для живлення навантаження. Якщо її буде не достатньо, мережа також одночасно забезпечує зарядку і навантаження.

Load First: Фотоелектрична енергія спочатку використовується для живлення навантаження, а потім для заряджання акумулятора. Якщо фотоелектричної енергії недостатньо, мережа доповнює батарею та навантаження одночасно.

Max Solar Power: дозволена максимальна вхідна потужність постійного струму.

Grid Peak-shaving:коли функція активна, споживана потужність мережі буде обмежена в межах встановленого значення. Якщо потужність навантаження перевищує допустиме значення, як додаток використовуватиметься енергія сонячних панелейта акумуляторів. Якщо невдається задовольнити вимоги до навантаження,потужність мережі збільшиться..

System Work Mode						
Grid Charge	Gen		<mark>∕</mark> Time Γime	Of Use Power	Batt	Mork
		01:00	5:00	5000	49.0V	Mode2
		05:00	9:00	5000	50.2V	
\checkmark		09:00	13:00	5000	50.9V	
\checkmark		13:00	17:00	5000	51.4V	
		17:00	21:00	5000	47.1V	
		21:00	01:00	5000	49.0V	

Grid		Time	Of Use		1
Charge Gen	-	Time	Power	Batt	
	01:00	5:00	5000	80%	Mod
	05:00	8:00	5000	40%	
	08:00	10:00	5000	40%	
	10:00	15:00	5000	80%	
	15:00	18:00	5000	40%	
	18:00	01:00	5000	35%	

Time of use:використовується для програмування, коли використовувати мережу або генератор для заряджання батареї, а коли розряджати батарею для живлення навантаження. Тільки після вибору пункту набудуть чинності наступні пункти (Мережа,генератор, час, потужність тощо). Зверніть увагу: У режимі Selling first і Time Of Use енергія акумуляторних батарей може бутиподана в мережу.

Grid charge: використовує мережу для заряджання акумуляторів у певний період часу.

Gen charge: Використовує дизельний генератор длязаряджання акумулятора в певний період часу. Time: real time, range of 01:00-24:00.

Power: Макс. дозволена потужність розряду батареї. Batt(V or SOC %): SOC батареї або напруга в момент, коли відбувається дія.

Наприклад:

У період 01:00-05:00,якщо SOC батареї нижче 80%, мережа використовуватиметься для заряджання батареї, доки SOC батареї не досягне 80%.

У період з 05:00 до 08:00 та з 08:00 до 10:00, якщо SOC батареї вище 40%, гібридний інвертор буде розряджати батарею доти, доки SOC не досягне 40%.

Протягом 10:00-15 :00, якщо батареї SOC вище 80%, гібридний інвертор буде розряджати батарею до тих пір, поки SOC не досяг не 80%.

5.8 Меню налаштування мережі

GridMode: Вибір режиму роботи мережі у вашому регіоні. Якщо ви не впевнені, будь ласка, виберіть «Загальний стандарт».

Будь ласка, дотримуйтесь місцевого коду мережі, а потім виберіть відповідний стандарт мережі.

Normal connect: Дозволений діапазон напруги/ частоти мережі, коли інвертор вперше під'єднується до мережі.

Normal Ramp rate: Це початкова потужність. Reconnect after trip: Дозволений діапазон напруги / частоти мережі для інвертора підключає мережу після відключення інвертора від мережі.

Reconnect Ramp rate:Значення для повторного підключення.

Reconnection time: Період очікування коли інвертора знову підключає мережу.

PF: Коефіцієнт потужності, який використовується для регулювання реактивної потужності інвертора.

Grid Setting/F(W)					
	F(W)				
Over frequenc	;y	Droop f	40%PE/Hz	Grid	
Start freq f	50.20Hz	Stop freq f	50.20Hz	Set4	
Start delay f	0.00s	Stop delay f	0.00s		
Under frequer	icy	Droop f	40%PE/Hz	$\overline{\frown}$	
Start freq f	49.80Hz	Stop freq f	49.80Hz		
Start delay f	0.00s	Stop delay f	0.00s		

FW:інвертор цієї серії здатний регулювати вихідну потужність інвертора відповідно до частоти мережі. Droop f: відсоток номінальної потужності на Гц. Наприклад, «Початкова частота f>50,2 Гц, кінцева частота f<50,2, падіння f=40%PE/Гц», коли частота мережі досягає 50,2 Гц, інвертор зменшить свою активну потужність при падінні f 40%. І тоді, коли частота мережевої системи менше 50,2 Гц, інвертор припинить зменшувати вихідну потужність. Для детальних значень налаштувань дотримуйтеся місцевого коду мережі.

V(W): регулювання активної потужності інвертора відповідно до встановленої напруги мережі.

V(Q): регулювання реактивної потужності інвертора відповідно до встановленої напруги мережі. Ця функція використовується для регулювання вихідної потужності інвертора (активної потужності та реактивної потужності) при зміні напруги мережі.

Lock-in/Pn 5%: Коли активна потужність інвертора менша ніж 5% номінальної потужності, режим VQ не працюватиме.

Lock-out/Pn 20%: Якщо активна потужність інвертора зростає з 5% до 20% номінальної потужності, режим VQ знову вступає в силу.

Наприклад: V2=110%, P2=20%. Коли напруга мережі досягає 110% від номінальної напруги мережі, вихідна потужність інвертора зменшить свою активну вихідну потужність до 20% номінальної потужності.

Наприклад: V1=90%, Q1=44%. Коли напруга мережі досягає 90% від номінальної напруги мережі, вихідна потужність інвертора становитиме 44% реактивної вихідної потужності. Для отримання детальних значень налаштування дотримуйтесь місцевого коду мережі.

P(Q): регулювання реактивної потужності інвертора відповідно до встановленої активної потужності. P(PF):налаштування коефіцієнта потужності інвертора відповідно до встановленої активної потужності. Щоб отримати докладні значення налаштування, дотримуйтесь місцевого коду мережі.

Lock-in/Pn 50%: Коли вихідна активна потужність інвертора менше ніж 50% номінальної потужності, він не входить до P(PF)

Lock-out/Pn 50%: Коли вихідна активна потужність інвертора перевищує 50% номінальної потужності, він перейде в режим P(PF).

Примітка: лише коли напруга мережі дорівнює або перевищує номінальну напругу мережі в 1,05 раза, Р (Режим PF) вступить в силу.

Reserved: Ця функція зарезервована. Не рекомендується.

5.9 Метод CEI-021 Standard Self-Check

По-перше, позначте «CEI-021» і «Однофазний/50 Гц» у меню налаштування мережі.

По-друге, натисніть «Самоперевірка системи», тоді вас попросять ввести пароль, а пароль за замовчуванням — 1234.

Примітка: не ставте позначку «Звіт CEI-021».

Ця програма «Самоперевірка системи» дійсна лише після вибору типу мережі «CEI-021».

Inverter ID : 20	Inverter ID : 2012041234					
Self-Test OK		8/8				
Testing 59.S1	Test 59.S1	OK!				
Testing 59.S2	Test 59.S2	OK!				
Testing 27.S1	Test 27.S1	OK!				
Testing 27.S2	Test 27.S2	OK!				
Testing 81>S1	Test 81>S1	OK!				
Testing 81>S2	Test 81>S2	OK!				
Testing 81 <s1< td=""><td>Test 81<s1< td=""><td>OK!</td></s1<></td></s1<>	Test 81 <s1< td=""><td>OK!</td></s1<>	OK!				
Testing 81 <s2< td=""><td>Test 81<s2< td=""><td>OK!</td></s2<></td></s2<>	Test 81 <s2< td=""><td>OK!</td></s2<>	OK!				

Під час процесу самоперевірки всі індикатори будуть увімкнені, а сигнал триватиме.

Коли всі тестові елементи показують ОК, це означає, що самотестування завершено успішно.

потім натисніть кнопку «esc», щоб вийти з цієї сторінки. Поставте прапорець «системна самоперевірка» в меню додаткових функцій і виберіть "CEI-021 Report".

Самоперевірка системи: після вибору цього елемента потрібно ввести пароль. Пароль за замовчуванням — 1234. Після введення пароля та натискання «ОК»`

Inverter ID : 2012041234					
Self-Test Report					
59.S1 threshold253V 900ms 59.S1: 228V 902ms					
59.S2 threshold264.5V 200m	is 59.S2: 229V 204ms				
27.S1 threshold195.5V 1500n	ns 27.S1: 228V 1508ms				
27.S2 threshold 34.5V 200m	s 27.S2: 227V 205ms				
81>.S1 threshold 50.2Hz 100m	s 81>.S1: 49.9Hz 103ms				
81>.S2 threshold 51.5Hz 100m	s 81>.S2: 49.9Hz 107ms				
81<.S1 threshold 49.8Hz 100m	s 81<.S1: 50.0Hz 95ms				
81<.S2 threshold 47.5Hz 100ms 81<.S2: 50.1Hz 97ms					

На цій сторінці буде показано результати тесту "CEI-021 self-check".

5.10 Меню налаштування використання португ енератора

Generator input rated power: озволена макс.потужність від дизель-генератора.

GEN connect to grid input: підключіть дизель-генератор до вхідного порту мережі.

Smart Load Output: У цьому режимі вхідне з'єднання генератора використовується як вихід, який отримує живлення тільки в тому випадку, якщо рівень заряду батареїі потужність фотоелектричної панелі вище за даного користувачем порогу.

e.g. Power=500W, ON: 100%, OFF=95%: Коли потужність PV перевищує 500 Вт, а SOC акумуляторної батареї досягає 100%, Smart Load Port увімкнеться автоматично та живить підключене навантаження. Коли SOC акумуляторної батареї < 95% або потужність PV < 500 Вт, Smart Load Port Порт завантаження вимкнеться автоматично.

Smart Load OFF Batt

• SOC батареї, при якому розумне навантаження вимкнеться.

Smart Load ON Batt

 SOC акумулятора, при якому вмикається Smart навантаження. Крім того, вхідна потужність PV повинна одночасно перевищувати встановлене значення (Power), після чого вмикається інтелектуальне навантаження.
 On Grid always on: Якщо натиснути «on Grid always on», інтелектуальне навантаження ввімкнеться, коли сітка присутня.

Micro Inv Input: Щоб використовувати вхідний порт генератора як мікроінвертор на вході мережевого інвертора (з підключенням змінного струму), ця функція також працюватиме з мережевими інверторами.

* Micro Inv Input OFF: коли SOC батареї перевищує встановлене значення, мікроінвертор або мережевий інвертор вимкнеться.

* Micro Inv Input ON: коли SOC батареї нижчий за встановлене значення, мікроінвертор або мережевий інвертор почне працювати.

AC Couple Fre High: При виборі MicroInvinput, коли SOC батареї буде поступово досягати заданого значення, вихідна потужність мікроінвертора буде лінійно зменшуватися. Коли рівень заряду акумулятора стане рівним заданому значенню, системна частота стане рівним із заданим значенням, і мікроінвертор перестане працювати.

* Note: Вхід Micro Inv OFF і Оп дійсний лише для певної версії fw.

* AC couple on load side: підключення виходу мережевого інвертора до порту навантаження гібридного інвертора. У цій ситуації гібридний інвертор не зможе

правильно показувати потужність навантаження.

* AC couple on grid side: ця функція зарезервована.

* Note: Деякі версії мікропрограми не мають цієї функції

5.11 Меню додаткових опцій.

Solar Arc Fault ON: Налаштування лише для США. System self check: Недоступна функція. GenPeak-shaving:Коли потужність генератора перевищує його номінальне значення, інвертор надає резервну частину, щоб гарантувати, що генератор не буде перевантажений. DRM: Для стандарту AS4777. Backup Delay: Запасна функція. BMS_Err_Stop:Якщо BMS не вдалося встановити зв'язок з інвертором, інвертор перестане працювати і повідомить про несправність. Signal ISLANDMODE: Колиінвертор підключає мережу. порт ATS буде виводити 230 В змінного струму, і він використовується для відключення заземлення (лінія порту N навантаження) через підключення зовнішнього реле. Коли інвертор відключається від мережі, напруга порту ATS будерівно 0, і зв'язок заземлення з нейтраллю залишиться. Більш детальнуінформацію див. на лівому зображенні.

Ex_Meter For CT:Використовується у трифазній системі з трифазним лічильником енергії CHNT (DTSU666). Виберіть відповідну фазу, до якої підключено гібридний інвертор, наприклад, якщо вихід гібридного інвертора підключається до фази A, натисніть A Phase.

ATS: напруга порту ATS. краще в положенні " зняти прапорець".

5.12 Меню інформації про пристрій

6. Режими роботи сонячної електростанції

Режим I: Основний

Режим II: 3 генератором

Режим III : Розумне навантаження.

Батарея

Розумне нав

Першим пріоритетним джерелом енергії системи завжди є сонячні панелі, другим і третім джерелами будуть акумуляторна батарея та мережа залежно від налаштувань. Останнім резервним джерелом живлення буде генератор, якщо він підключений

7. Інформація про несправності

Інвертор відповідає вимогам безпеки та електромагнітної сумісності. Перед відправкою з заводу інвертор проходить суворі випробування, що гарантують його надійну роботу.

Якщо на інверторі з'являється якесь ізповідомлень про помилки, перераховані в Таблиці 7-1, і несправність не усунена після перезапуску, зверніться до місцевого дилера або всервісний центр. Вам необхідно підготувати наступну інформацію:

- 1. Серійний номер інвертора;
- 2. Дистриб'ютор або сервісний центр інвертора ;
- 3. Дата введення інвертора в експлуатацію;
- Опис проблеми(включаючи код несправності та стан індикатора,щовідображається на РК-дисплеї).
- 5. Ваша контактна інформація.

Щоб дати вам більш чітке уявлення про несправності інвертора, ми перерахуємо можливі коди несправностей та їх опис.

Таблиця 7-1. Інформація про несправності

Код помилки	Onuc	Рішення	
F08	GFDI _Relay_Failure Відмова реле GFDI	 Коли інвертор працює в розщепленій фазі (120/240 В змінного струму) або в трифазній системі (120/208 В змінного струму), лінія резервного навантаження N повинна бути заземлена; Якщо несправність зберігається, зверніться до сервісного центру. 	
F13	Working mode change Зміни у режимі роботи	 При зміні типу мережі та частоти з'явиться повідомлення F13. Якщо режим батареї було змінено на режим «Без батареї», з'явиться повідомлення F13. Для деяких старих версій сонячних батарей з'являтиметься повідомлення F13. Якщо несправність зберігається, зверніться до сервісного центру. 	
F18	AC over current fault of hardware Перегрузка по переменному току	 Будь ласка, перевірте, чи є резервна потужність навантаження і загальна потужність навантаження в межах допустимого діапазону; Перезапустіть і перевірте, чи все гаразд; Зверніться до сервісного центру, якщо зміни не відбулися. 	
F20	DC over current fault ofthe hardware Перегрузка по постоянному току	 Перевірте підключення сонячних батарей і акумулятора; В автономному режимі інвертор запускається з великим навантаженням, може з'явитися повідомлення F20. Будь ласка, зменшіть потужність підключеного навантаження; Вимкніть перемикач постійного та змінного струму, зачекайте одну хвилину, потім знову увімкніть перемикач постійного/змінного струму; Зверніться до сервісного центру, якщо змін не сталося. 	
F22	Tz_EmergStop_Faul Ініційована Аварійна зупинка	Зверніться до сервісного центру.	
F23	AC leakage current is transient over current Bumiк поперемінно му струму	 Перевірте заземлення сонячних батарей. Перезавантажте систему 2-3 рази. Якщо несправність не усунена, зв'яжіться з сервісним центром 	
F24	DC insulation impedance failure Порушення ізоляціїпо постійному струму	Опір ізоляції сонячного кабелю занадто низький 1. Перевірте надійність і правильність з'єднання фотоелектричних панелей та інвертора. 2. Перевірте, чи підключений кабель інвертора до землі; 3. Зверніться до сервісного центру, якщо змін не сталося.	
F26	The DC busbar is unbalanced Шина постійного струму не збалансована	 Перезавантажте систему кілька разів. Якщо несправність не усунена, зв'яжіться з сервісним центром. 	
F29	Parallel CANBus fault Несправність паралельної CAN-ишни	 У паралельному режимі перевірте підключення кабелю паралельного зв'язку та налаштування адреси зв'язку гібридного інвертора. Під час запуску паралельної системи інвертора видається повідомлення F29, коли всі інвертори будуть включені, повідомлення пропаде. Якщо несправність не усунена, зв'яжіться з сервісним центром. 	

Код помилки	Onuc	Рішення		
F34	AC Overcurrent fault Помилка перевантаження по змінному струму	 Перевірте підключене навантаження, переконайтеся, що його потужність знаходиться в допустимому діапазоні. Якщо несправність не усунена, зверніться до сервісного центру. 		
F35	No AC grid Немає мережі змінного струму	 Перевірте правильність підключення до мережі; Перевірте, чи увімкнено перемикач між інвертороми мережею; Зверніться до сервісного центру, якщо змін не було. 		
F41	Parallel system stop Зупинка паралельної системи	 Перевірте стан гібридного інвертора. Якщо один гібридний інвертор перебуває у стані ОFF, інші гібридні інвертори можуть повідомляти про помилку F41 у паралельній системі. Якщо несправність зберігається, зверніться до сервісного центру. 		
F42	AC line low voltage Низька напруга мережі змінного струму	Помилка напруги в мережі 1. Переконайтеся, що напруга змінного струму знаходиться в діапазоні стандартної напруги, вказаної в специфікації; 2. Перевірте надійність і правильність підключення кабелів змінного струму; 3. Зверніться до сервісного центру, якщо змін не було.		
F47	АС over frequency Перевищення частоти змінного струму	 Перевірте, чи знаходиться частота в діапазоні технічних характеристик чи ні; Перевірте надійність і правильність підключення кабелів змінного струму; Зверніться до сервісного центру, якщо змін не відбулося. 		
F48	AC lower frequency Низька частота змінного струму	 Перевірте, чи знаходиться частота в діапазоні технічних характеристик чи ні; Перевірте надійність та правильність підключення кабелів змінного струму; Зверніться до сервісного центру, якщо змін не відбулося. 		
F56	DC busbar voltage istoo low Низька напруга на ишні постійного струму	Низька напруга батареї 1. Перевірте, чи не надто низька напруга батареї; 2. Якщо напруга батареї занадто низька, використовуйте фотоелектричну батарею або мережу для заряджання батареї; 3. Зверніться до сервісного центру, якщо змін не відбулося.		
F58	BMS communication fault Помилка з'єднання BMS	 Перезавантажте систему 2-3 рази. Якщо несправність не усунена, зв'яжіться з сервісним. 		
F63	ARC fault Помилка ARC	 Перевірте кабельне з'єднання сонячних панелей. Якщо несправність не усунена, зв'яжіться із сервісним центром. 		
F64	Heat sink high temperaturefailure Помилка високої температури радіатора	 Перевірте температуру робочого середовища; Вимкніть інвертор на 10 хвилин та перезапустіть його; Зверніться до сервісного центру, якщо не допомогло. 		

Заводська гарантія не поширюється на пошкодження з таких причин:

- · Пошкодження обладнання при транспортуванні;
- Пошкодження, спричинені неправильною установкою або введенням в експлуатацію;
- Пошкодження, викликані недотриманням вимог інструкцій з експлуатації,
- встановлення або технічного обслуговування;
- Ушкодження, викликане спробами модифікувати, змінити або відремонтувати продукцію;
- Пошкодження, спричинені неправильним використанням або експлуатацією;
- Пошкодження, спричинені недостатньою вентиляцією обладнання;
- Збитки, викликані недотриманням чинних стандартів або правил безпеки;
- Пошкодження, викликані стихійними лихами або форс-мажорними обставинами (наприклад, повені, блискавки, перенапруги, урагани, пожежі і т. д.) Крім того, нормальний знос не вплине на роботу виробу. Будь-які зовнішні царапини, плями або природний механічний знос не є дефектами виробу.

8. Межі відповідальності.

На додаток до описаної вище гарантії на продукт, державні та місцеві закони та постанови передбачають фінансову компенсацію за підключення продукту до джерела живлення (включаючи порушення умов і гарантій).

9. Технічний опис

Модель	S	UN-3.6K-	SUN-5K	-	SUN-6K-
	SC	GO3LP1-EU	SG03LP1-	EU	SG03LP1-EU
Вхідні дані батареї				<u> </u>	
Тип батареї		Свин	цево-кислотний а	60 ЛІТІЙ-ІОІ	НИЙ
Діапазон напруги батареї(V)			40-60V	/	
Макс.Струм зарядки(А)		90A	120A		135A
Макс. Розрядний струм (А)		90A	120A		135A
Крива зарядки			3 Етапи / Вирі	внювання	
Зовнішній датчик температури			yes		
Стратегія зарядки дляLi-ionaкум.			Самонастрой	ка кBMS	
Вхідні дані стрінгу PV					
Макс. Вхідна потужність DC (W)		4680W	6500W	,	7800W
Вхідна напруга PV (V)			370V (125V~	′500V)	
Діапазон МРРТ (V)			150~425	δV	
Діапазон напруги DC при повному	навантаж	енні	300~425	δV	
Пускова напруга (V)			125V		
Вхідний струм PV (А)			13A+13	A	
КількістьМРРТ			2		
КількістьстрінгівнаМРРТ			1+1		
Вихідні дані АС					
Номінал.вихідна потужн. АС та UPS	(W)	3600	5000		6000
Макс. Вихідна потужність АС (W)		3960	5500		6600
Пікова потужність (позамережею)			2 рази номіналы	ної потужн	ості, 10 С
Номінальний вихідний струм АС (А)	1	6.4/15.7A	22.7/21.7	7A	27.3/26.1A
Макс. Змінний струм (А)	:	18/17.2A	25/23.9	A	30/28.7A
Макс. Безперервне проходження	AC (A)		35A		40A
Фактор потужностіі	. ,		0.8 випередже	ння до 0.8	відставання
Вихідна частота та напруга		5	0/60Hz; 220/230 (однофазни	1й)
Тип мережі			однофазі	ний	
Гармонійні спотворення струму (ТІ	HD)		<3% (від номін	альної пот	ужності)
Подача постійного струму	,		<0.5%	n	, ,
Ефективність					
Макс. Ефективність			97.60%	ó	
Євро Ефективність			96.50%	, b	
Ефективність МРРТ			>99%		
Захист					
Захист від блискавки входу PV			Вбудова	ний	
Захист від пошкодження ізоляції D	с		Вбудова	ний	
Виявлення резистора ізоляції			Вбудова	ний	
Захист від зворотної полярності вх	оду PV		Вбудова	ний	
Блок моніторингу залишкового стр	уму		Вбудова	ний	
Захист вихідного струму			Вбудова	ний	
Захист від короткого замикання на	виході		Вбудова	ний	
Захист від перенапруги			DC Type II / AC	C Type II	
			DC Type II / AC	Type III	

модель	SUN-3.6K- SG03LP1-EU	SUN-5K- SG03LP1-EU	SUN-6K- SG03LP1-EU	
Сертифікати та стандарти				
Стандарти мережі	VDE4105,IEC61727/62 G98,G99,C10-1	116,VDE0126,AS4777 1,UNE217002,NBR16	.2,CEI 0 21,EN50549-1, 149/NBR16150	
Безпека ЕМС / Стандарт	IEC/EN 62109- IEC/EN 61000-6-	1,IEC/EN 62109-2,IEC, 2,IEC/EN 61000-6-3,II	/EN 61000-6-1, EC/EN 61000-6-4	
Загальні дані				
Діапазон робочих температур (°С)	-40~60 ℃ , >45 ℃ 3i	иження номінальни	х параметрів	
Охолодження		Розумнеохолодя	кення	
Шум(дБ)		<30 dB		
Зв'язок з BMS		RS485; CAN		
Вага(кг)		20.5		
Розмір (mm)		330W×580H×232D		
Ступінь захисту		IP65		
Тип монтажу		настінний		
Гарантія		5 years		

10. Додаток І

Розшифровка виводів порту RJ45 для BMS

No.	RS485 Pin	CAN Pin	12345678
1	RS485		
2	Meter_CON	GND	
3	GND		
4		CANH	
5		CANL	
6	GND	\	
7	RS485A		
8	RS485B		

RS485 Порт

САН Порт

Визначення контакту порту RJ45 для RS485. Цей порт використовується для зв'язку з лічильником електроенергії

No.	RS485 Pin
4	RS485B
5	RS485A

RS485 Порт

RS232

No.	WIFI/RS232
1	
2	TX
3	RX
4	
5	D-GND
6	
7	
8	
9	12Vdc

Цей портRS232 використовується для підключення

11. ДодатокІІ

- 1. Розмір трансформатора струму з роз'ємним сердечником (ТТ): (мм)
- 2. Довжина вторинного вихідного кабелю становить 4 м.

NINGBO DEYE INVERTER TECHNOLOGY CO., LTD.

Add: No.26-30, South Yongjiang Road, Beilun, 315806, Ningbo, China Tel: +86 (0) 574 8622 8957 Fax: +86 (0) 574 8622 8852 E-mail: service@deye.com.cn Web: www.deyeinverter.com

